If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-25X+56=0
a = 1; b = -25; c = +56;
Δ = b2-4ac
Δ = -252-4·1·56
Δ = 401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{401}}{2*1}=\frac{25-\sqrt{401}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{401}}{2*1}=\frac{25+\sqrt{401}}{2} $
| |15-3x|=18 | | -6x^2-384=0 | | 8x+2x=2x+114 | | 11x+4+70=180 | | 3+n=12-4 | | 5x-5+2x=2x+5 | | 1/3x+3/4(x+1)-x+3=0 | | x+x/5=8 | | -3(x+9=24 | | 7c+5=89 | | 1/3x+3/4(x+1)=x+3 | | m-54/7=5 | | T=85+85+s/3 | | x^2+6x-368=0 | | 7/3x=3;x | | 5+3x=6+3x | | 5+3x=3(2+x) | | -4(c-9)=60 | | 10x+14=3(3x+1) | | 5+3e=26 | | (2x+3)+(3x+4)-34=0 | | 5y=23.5 | | 5t²=125 | | 26=5=3e | | 3(x-4)+16=2(x+5) | | 1/2(4x+6)+1/3(9x-12)=34 | | 2x-3/4=21/4 | | -2=g-g | | (6x-1)+x=180 | | 2x-1=4+5 | | 3(6-x)*2x=15 | | 2/5-x=3/5x-6 |